Variance Covariance Matrix of Sequential Gaussian Simulation
See SGS.m for more general information on Sequential Gaussian Simulation.
Contents
- 1. Creation of the grid and path
- 2. Initialization Spiral Search
- 3. Initialization Covariance Lookup Table
- 4. Initialization of variable
- 5 Loop of scale for multi-grid path
- 5.1 Initializsed the search table of neighbors for the scale
- 5.2 Loop of simulated node
- 5.2.1 Neighborhood search
- 5.2.2 Kriging system solving and storing of weights
- 6 Compute the Covariance
function CY = SGS_varcovar(nx,ny,~,covar,neigh,parm)
1. Creation of the grid and path
[Y, X] = ndgrid(1:ny,1:nx); Path = nan(ny,nx); rng(parm.seed_path); if parm.mg sx = 1:ceil(log(nx+1)/log(2)); sy = 1:ceil(log(ny+1)/log(2)); sn = max([numel(sy), numel(sx)]); nb = nan(sn,1); start = zeros(sn+1,1); ds = 2.^(sn-1:-1:0); path = nan(nx*ny,1); for i_scale = 1:sn [Y_s,X_s] = ndgrid(1:ds(i_scale):ny,1:ds(i_scale):nx); % matrix coordinate id = find(isnan(Path(:)) & ismember([Y(:) X(:)], [Y_s(:) X_s(:)], 'rows')); nb(i_scale) = numel(id); start(i_scale+1) = start(i_scale)+nb(i_scale); path( start(i_scale)+(1:nb(i_scale)) ) = id(randperm(nb(i_scale))); Path(path( start(i_scale)+(1:nb(i_scale)) )) = start(i_scale)+(1:nb(i_scale)); end else id=find(isnan(Path)); path = id(randperm(numel(id))); Path(path) = 1:numel(id); ds=1; nb = numel(id); start=[0 nb]; sn=1; end
Not enough input arguments. Error in SGS_varcovar (line 10) [Y, X] = ndgrid(1:ny,1:nx);
2. Initialization Spiral Search
x = ceil( min(covar(1).range(2)*k.wradius, nx)); y = ceil( min(covar(1).range(1)*k.wradius, ny)); [ss_Y, ss_X] = ndgrid(-y:y, -x:x);% grid{i_scale} of searching windows ss_dist = sqrt( (ss_X/covar(1).range(2)).^2 + (ss_Y/covar(1).range(1)).^2); % find distence ss_id_1 = find(ss_dist <= k.wradius); % filter node behind radius. rng(parm.seed_search); ss_id_1 = ss_id_1(randperm(numel(ss_id_1))); [~, ss_id_2] = sort(ss_dist(ss_id_1)); % sort according distence. ss_X_s=ss_X(ss_id_1(ss_id_2)); % sort the axis ss_Y_s=ss_Y(ss_id_1(ss_id_2)); ss_n=numel(ss_X_s); %number of possible neigh if parm.mg ss_scale=sn*ones(size(ss_X)); for i_scale = sn-1:-1:1 x_s = [-fliplr(ds(i_scale):ds(i_scale):x(end)) 0 ds(i_scale):ds(i_scale):x(end)]+(x+1); y_s = [-fliplr(ds(i_scale):ds(i_scale):y(end)) 0 ds(i_scale):ds(i_scale):y(end)]+(y+1); ss_scale(y_s,x_s)=i_scale; end ss_scale_s = ss_scale(ss_id_1(ss_id_2)); else ss_scale_s = sn*ones(size(ss_id_2)); end
3. Initialization Covariance Lookup Table
ss_a0_C = zeros(ss_n,1); ss_ab_C = zeros(ss_n); for i=1:numel(covar) a0_h = sqrt(sum(([ss_Y_s(:) ss_X_s(:)]*covar(i).cx).^2,2)); ab_h = squareform(pdist([ss_Y_s ss_X_s]*covar(i).cx)); ss_a0_C = ss_a0_C + kron(covar(i).g(a0_h), covar(i).c0); ss_ab_C = ss_ab_C + kron(covar(i).g(ab_h), covar(i).c0); end
4. Initialization of variable
LambdaM = zeros(nx*ny,neigh.nb+1); XY_i=[Y(path) X(path)];
5 Loop of scale for multi-grid path
for i_scale = 1:sn
5.1 Initializsed the search table of neighbors for the scale
ss_id = find(ss_scale_s<=i_scale); ss_XY_s = [ss_Y_s(ss_id) ss_X_s(ss_id)]; ss_a0_C_s = ss_a0_C(ss_id); ss_ab_C_s = ss_ab_C(ss_id,ss_id);
5.2 Loop of simulated node
for i_pt = start(i_scale)+(1:nb(i_scale))
5.2.1 Neighborhood search
n=0; neigh_nn=nan(neigh.nb,3); for nn = 2:size(ss_XY_s,1) % 1 is the point itself... therefore unknown ijt = XY_i(i_pt,:)+ss_XY_s(nn,:); if ijt(1)>0 && ijt(2)>0 && ijt(1)<=ny && ijt(2)<=nx if Path(ijt(1),ijt(2)) < i_pt % check if it,jt exist n=n+1; neigh_nn(n,:) = [nn ijt]; if n >= neigh.nb break; end end end end
5.2.2 Kriging system solving and storing of weights
neigh_id = (neigh_nn(1:n,2:3)-1)*[1 ny]'+1; a0_C = ss_a0_C_s(neigh_nn(1:n,1)); ab_C = ss_ab_C_s(neigh_nn(1:n,1), neigh_nn(1:n,1)); l = ab_C \ a0_C; S = sum([covar.c0]) - l'*a0_C; LambdaM(path(i_pt), neigh_id) = l./sqrt(S); LambdaM(path(i_pt), path(i_pt)) = -1/sqrt(S);
end
end
6 Compute the Covariance
CY = sparse(LambdaM) \ transpose(inv(sparse(LambdaM)));
end