Constant Path Sequential Gaussian Simulation
See SGS.m for more general information on Sequential Gaussian Simulation. SGS with a constant path uses a unique path for each realization, thus, it's code loop around the realization and the node after. See pseudo-code below <fx1.jpg>
Contents
function [Rest, t] = SGS_hybrid(nx,ny,m,covar,neigh,parm)
tik.global = tic;
1. Creation of the grid and path
tik.path = tic; [Y, X] = ndgrid(1:ny,1:nx); Path = nan(ny,nx); rng(parm.seed_path); sx = 1:ceil(log(nx+1)/log(2)); sy = 1:ceil(log(ny+1)/log(2)); sn = max([numel(sy), numel(sx)]); ds = 2.^(sn-1:-1:0); nb = nan(sn,1); start = zeros(sn+1,1); path = nan(nx*ny,1); if (parm.hybrid>1) [Y_s,X_s] = ndgrid(1:ds(parm.hybrid-1):ny,1:ds(parm.hybrid-1):nx); % matrix coordinate Path(ismember([Y(:) X(:)], [Y_s(:) X_s(:)], 'rows')) = 0; nb(parm.hybrid-1) = sum(Path(:)==0); start(parm.hybrid) = nb(parm.hybrid-1); end for i_scale = parm.hybrid:sn [Y_s,X_s] = ndgrid(1:ds(i_scale):ny,1:ds(i_scale):nx); % matrix coordinate id = find( isnan(Path(:)) & ismember([Y(:) X(:)], [Y_s(:) X_s(:)], 'rows')); nb(i_scale) = numel(id); start(i_scale+1) = start(i_scale)+nb(i_scale); path( start(i_scale)+(1:nb(i_scale)) ) = id(randperm(nb(i_scale))); Path(path( start(i_scale)+(1:nb(i_scale)) )) = start(i_scale)+(1:nb(i_scale)); end t.path = toc(tik.path);
Not enough input arguments. Error in SGS_hybrid (line 15) [Y, X] = ndgrid(1:ny,1:nx);
2. Initialization Spiral Search
x = ceil( min(covar(1).range(2)*neigh.wradius, nx)); y = ceil( min(covar(1).range(1)*neigh.wradius, ny)); [ss_Y, ss_X] = ndgrid(-y:y, -x:x);% grid{i_scale} of searching windows ss_dist = sqrt( (ss_X/covar(1).range(2)).^2 + (ss_Y/covar(1).range(1)).^2); % find distence ss_id_1 = find(ss_dist <= neigh.wradius); % filter node behind radius. rng(parm.seed_search); ss_id_1 = ss_id_1(randperm(numel(ss_id_1))); [~, ss_id_2] = sort(ss_dist(ss_id_1)); % sort according distence. ss_X_s=ss_X(ss_id_1(ss_id_2)); % sort the axis ss_Y_s=ss_Y(ss_id_1(ss_id_2)); ss_n=numel(ss_X_s); %number of possible neigh ss_scale=sn*ones(size(ss_X)); for i_scale = sn-1:-1:1 x_s = [-fliplr(ds(i_scale):ds(i_scale):x(end)) 0 ds(i_scale):ds(i_scale):x(end)]+(x+1); y_s = [-fliplr(ds(i_scale):ds(i_scale):y(end)) 0 ds(i_scale):ds(i_scale):y(end)]+(y+1); ss_scale(y_s,x_s)=i_scale; end ss_scale_s = ss_scale(ss_id_1(ss_id_2));
3. Initialization of covariance lookup table
tik.covtable = tic; ss_a0_C = zeros(ss_n,1); ss_ab_C = zeros(ss_n); for i=1:numel(covar) a0_h = sqrt(sum(([ss_Y_s(:) ss_X_s(:)]*covar(i).cx).^2,2)); ab_h = squareform(pdist([ss_Y_s ss_X_s]*covar(i).cx)); ss_a0_C = ss_a0_C + kron(covar(i).g(a0_h), covar(i).c0); ss_ab_C = ss_ab_C + kron(covar(i).g(ab_h), covar(i).c0); end t.covtable = toc(tik.covtable);
Constant path Loop
tik.weight = tic; NEIGH = nan(nx*ny,neigh.nb); % NEIGH_1 = nan(nx*ny,neigh.nb); % NEIGH_2 = nan(nx*ny,neigh.nb); LAMBDA = nan(nx*ny,neigh.nb); S = nan(nx*ny,1); XY_i=nan(nx*ny,2); XY_i(~isnan(path),:) = [Y(path(~isnan(path))) X(path(~isnan(path)))]; for i_scale = parm.hybrid:sn ss_id = find(ss_scale_s<=i_scale); ss_XY_s = [ss_Y_s(ss_id) ss_X_s(ss_id)]; ss_a0_C_s = ss_a0_C(ss_id); ss_ab_C_s = ss_ab_C(ss_id,ss_id); for i_pt = start(i_scale)+(1:nb(i_scale)) n=0; neigh_nn=nan(neigh.nb,1); NEIGH_1 = nan(neigh.nb,1); NEIGH_2 = nan(neigh.nb,1); for nn = 2:size(ss_XY_s,1) % 1 is the point itself... therefore unknown ijt = XY_i(i_pt,:) + ss_XY_s(nn,:); if ijt(1)>0 && ijt(2)>0 && ijt(1)<=ny && ijt(2)<=nx if Path(ijt(1),ijt(2)) < i_pt % check if it,jt exist n=n+1; neigh_nn(n) = nn; NEIGH_1(n) = ijt(1); NEIGH_2(n) = ijt(2); if n >= neigh.nb break; end end end end if n==0 S(i_pt) = sum([covar.c0]); else NEIGH(i_pt,:) = NEIGH_1 + (NEIGH_2-1)* ny; a0_C = ss_a0_C_s(neigh_nn(1:n)); ab_C = ss_ab_C_s(neigh_nn(1:n), neigh_nn(1:n)); l = ab_C \ a0_C; LAMBDA(i_pt,1:n) = l; S(i_pt) = sum([covar.c0]) - l'*a0_C; end end end t.weight = toc(tik.weight);
Realization loop
tik.real = tic; Rest = nan(ny,nx,m); for i_real=1:m Res=nan(ny,nx); % Path Path_real = Path; path_real = path; rng(parm.seed_path); for i_scale = 1:parm.hybrid-1 [Y_s,X_s] = ndgrid(1:ds(i_scale):ny,1:ds(i_scale):nx); % matrix coordinate id = find(Path_real(:)==0 & ismember([Y(:) X(:)], [Y_s(:) X_s(:)], 'rows')); nb(i_scale) = numel(id); start(i_scale+1) = start(i_scale)+nb(i_scale); path_real( start(i_scale)+(1:nb(i_scale)) ) = id(randperm(nb(i_scale))); Path_real(path_real( start(i_scale)+(1:nb(i_scale)) )) = start(i_scale)+(1:nb(i_scale)); end XY_i=[Y(path_real) X(path_real)]; rng(parm.seed_U); U=randn(ny,nx); for i_scale = 1:parm.hybrid-1 % Neighborhood Search ss_id = find(ss_scale_s<=i_scale); ss_XY_s = [ss_Y_s(ss_id) ss_X_s(ss_id)]; ss_a0_C_s = ss_a0_C(ss_id); ss_ab_C_s = ss_ab_C(ss_id,ss_id); for i_pt = start(i_scale)+(1:nb(i_scale)) n=0; neigh_nn=nan(neigh.nb,1); NEIGH_1 = nan(neigh.nb,1); NEIGH_2 = nan(neigh.nb,1); for nn = 2:size(ss_XY_s,1) % 1 is the point itself... therefore unknown ijt = XY_i(i_pt,:) + ss_XY_s(nn,:); if ijt(1)>0 && ijt(2)>0 && ijt(1)<=ny && ijt(2)<=nx if Path_real(ijt(1),ijt(2)) < i_pt % check if it,jt exist n=n+1; neigh_nn(n) = nn; NEIGH_1(n) = ijt(1); NEIGH_2(n) = ijt(2); if n >= neigh.nb break; end end end end if n==0 Res(path_real(i_pt)) = U(i_pt)*sum([covar.c0]); else a0_C = ss_a0_C_s(neigh_nn(1:n)); ab_C = ss_ab_C_s(neigh_nn(1:n), neigh_nn(1:n)); LAMBDA_t = ab_C \ a0_C; S_t = sum([covar.c0]) - LAMBDA_t'*a0_C; NEIGH_t = NEIGH_1 + (NEIGH_2-1)* ny; Res(path_real(i_pt)) = LAMBDA_t'*Res(NEIGH_t(1:n)) + U(i_pt)*sqrt(S_t); end end for i_scale = parm.hybrid:sn for i_pt = start(i_scale)+(1:nb(i_scale)) n = ~isnan(NEIGH(i_pt,:)); Res(path_real(i_pt)) = LAMBDA(i_pt,n)*Res(NEIGH(i_pt,n))' + U(i_pt)*sqrt(S(i_pt)); end end end Rest(:,:,i_real) = Res; end t.real = toc(tik.real); t.global = toc(tik.global);
end